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We consider, using linear water-wave theory, three-dimensional problems concerning
the interaction of waves with structures in a fluid which contains a layer of finite
depth bounded above by a free surface and below by an infinite layer of fluid
of greater density. For such a situation time-harmonic waves can propagate with
two different wavenumbers K and k. In a single-layer fluid there are a number
of reciprocity relations that exist connecting the various hydrodynamic quantities
that arise, and these relations are systematically extended to the two-fluid case. The
particular problems of wave radiation and scattering by a submerged sphere in either
the upper or lower layer are then solved using multipole expansions.

1. Introduction
This paper represents an extension to three dimensions of the work of Linton

& McIver (1995, hereafter referred to as LM), in which a two-dimensional linear
scattering theory was developed to study the interaction of water waves with obstacles
in fluids consisting of a layer of finite depth bounded above by a free surface and
below by an infinite layer of denser fluid. The motivation for this work came from a
plan to build an underwater pipe bridge across one of the Norwegian fjords, bodies
of water which typically consist of a layer of fresh water about 10 m thick on top of
a very deep body of salt water.

Very little work has been done on wave/structure interactions in such fluid re-
gions, except by approximating the free surface by a rigid lid. With this simplifying
assumption Sturova (1994), for example, has studied the radiation of waves by an
oscillating cylinder which is also moving uniformly in a direction perpendicular to
its axis. With the correct linear free-surface boundary condition, but in the absence
of obstacles, Lamb (1932, Art. 231) showed that the appropriate dispersion relation
for this two-layer configuration has two solutions for a given frequency, one corre-
sponding to waves where the majority of the disturbance is close to the free surface
and the other to waves on the interface between the two fluid layers. More recently,
Iooss (1999) has studied nonlinear periodic travelling waves in two dimensions, again
in the absence of any obstacles.

When a wave is scattered by an obstacle there is the possibility that the wave energy
will be transferred between the two possible modes and computations in LM demon-
strate this for the case of a submerged horizontal cylinder in either the upper or the
lower layer. In this paper we will develop a general three-dimensional linear scattering
theory and then illustrate it by solving problems involving submerged spheres. Again
the transfer of energy between the two different wave modes will be apparent.
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General relations exist between various quantities that arise in water-wave radiation
and diffraction problems. For a single-layer fluid these can be derived systematically
using Green’s theorem (see, for example, Mei 1983) and they were extended to two-
layer fluids in two dimensions in LM. In § 2 below, the equivalent relations are derived
for the three-dimensional two-fluid case. The heave and sway radiation problems for
a submerged sphere, in either the lower or upper layer, are solved using multipole
expansions in § 3 and in § 4 the scattering problem is solved for such bodies.

2. Three-dimensional radiation and scattering in two-layer fluids
We take the origin of coordinates in the undisturbed interface between the upper

(lighter) fluid and the lower (denser) fluid. Both fluids are assumed to be inviscid
and incompressible. Horizontal coordinates are x and y whilst the vertical coordinate
z is measured upwards. The undisturbed free surface is z = d. Cylindrical polar
coordinates defined by

x = R cos α, y = R sin α, (2.1)

are also be used.
The upper fluid, 0 < z < d, is referred to as region I , whilst the lower fluid, z < 0,

is region II . The potential in the upper fluid (of density ρI ) is φI and that in the
lower fluid (of density ρII > ρI ) is φII . The motion is assumed to be irrotational and
so both φI and φII satisfy Laplace’s equation:

∇2φI = ∇2φII = 0. (2.2)

The ratio of the densities of the two fluids ρI/ρII (< 1) will be denoted by ρ and then
the linearized boundary conditions on the interface and free surface are

φIz = φIIz on z = 0, (2.3)

ρ(φIz −KφI ) = φIIz −KφII on z = 0, (2.4)

φIz = KφI on z = d, (2.5)

where K = ω2/g, the time-dependence of e−iωt having been suppressed. The boundary
conditions (2.3) and (2.4) represent the continuity of normal velocity and pressure at
the interface respectively.

Solutions to these equations which disappear as z → −∞ and which represent
horizontally travelling waves with wavenumber u can be found provided u is a
solution of the dispersion relation, given by

(u−K)(K(σ + e−2ud)− u(1− e−2ud)) = 0, (2.6)

where σ = (1 + ρ)/(1− ρ). It follows that either u = K or u = k, where

K(σ + e−2kd) = k(1− e−2kd). (2.7)

There is precisely one positive root k which lies in the range

Kσ < k <
K(σ + 1)

1− e−2Kdσ
. (2.8)

The general form for outgoing cylindrical waves in such a situation can easily be
derived. The velocity potential takes a different form in the upper and lower regions
which can be characterized by their far-field forms:

φIi ∼
(

2

πKR

)1/2

eiKR−iπ/4eKzAi(α) +

(
2

πkR

)1/2

eikR−iπ/4g(z)Bi(α), (2.9)
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φIIi ∼
(

2

πKR

)1/2

eiKR−iπ/4eKzAi(α) +

(
2

πkR

)1/2

eikR−iπ/4ekzBi(α) (2.10)

as KR →∞, where

g(z) =
Kσ − k
K(σ − 1)

ekz +
K − k
K(σ − 1)

e−kz (2.11)

=
ρ−1

1− e2kd
ekz +

ρ−1 − 1 + e2kd

1− e2kd
e−kz (2.12)

and Ai and Bi are arbitrary functions of α. An incident plane wave with wavenumber
k making an angle αinc with the positive x-axis has the form

φIinc = g(z)eikR cos (α−αinc), (2.13)

φIIinc = ekzeikR cos (α−αinc), (2.14)

whereas an incident wave of wavenumber K has the form

φinc = eKzeiKR cos (α−αinc) (2.15)

in both the upper and lower fluids.
Now consider a situation in which there are a number of bodies, some in the

upper layer, some in the lower layer, and some straddling the two. The boundaries
of those bodies in the upper fluid will be denoted by BI and those in the lower fluid
by BII . Assume that φ and ψ are solutions to two different problems, both satisfying
(2.2)–(2.5) with ∂φ/∂n and ∂ψ/∂n given on the boundaries BI and BII . If we apply
Green’s theorem we obtain ∫

S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
ds = 0, (2.16)

since φ and ψ are harmonic functions. Here S is the boundary of a fluid region
completely contained in one of the fluid layers and ∂/∂n is the derivative with respect
to the outward normal. In region I , S is composed of the free surface, the boundary
of the bodies BI , the interface and a cylinder SI∞ whose radius is sufficiently large for
the asymptotic forms of the potentials to be used. In region II , S is composed of
a surface parallel to the interface whose depth will be made to tend to infinity, the
boundary of the bodies BII , the interface and a cylinder of large radius SII∞ .

It follows from (2.3) and (2.4) that

ρ

(
φI
∂ψI

∂z
− ψI ∂φ

I

∂z

)
= φII

∂ψII

∂z
− ψII ∂φ

II

∂z
on z = 0. (2.17)

If we apply Green’s theorem (2.16) in regions I and II the resulting formulas can be
added so that the integral along the interface vanishes because of (2.17) as does the
free-surface integral due to (2.5). This yields

ρ

∫
BI

(
φI
∂ψI

∂n
− ψI ∂φ

I

∂n

)
ds+

∫
BII

(
φII

∂ψII

∂n
− ψII ∂φ

II

∂n

)
ds

= −ρ
∫
SI∞

(
φI
∂ψI

∂n
− ψI ∂φ

I

∂n

)
ds−

∫
SII∞

(
φII

∂ψII

∂n
− ψII ∂φ

II

∂n

)
ds. (2.18)

By using this equation with radiation and scattering potentials for φ and ψ we can
obtain a number of relations between various hydrodynamic quantities.
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2.1. Two radiation potentials

First we consider the case of two radiation potentials. Let φ = φi and ψ = φj be two
radiation potentials whose behaviour in the far field is given by (2.9) and (2.10) and
which satisfy the body boundary conditions

∂φi

∂n
= ni,

∂φj

∂n
= nj on SB, (2.19)

where ni is the component of the inward normal to the body in the ith mode of
motion and SB is the body boundary, which for simplicity we will assume is entirely
contained within region I or region II . Only the interaction terms between the two
modes on the right-hand side of (2.18) are trivially non-zero, but the contributions
from these interaction terms are also zero since, using (2.7), we can show that

ρ

∫ d

0

eKzg(z) dz = −
∫ 0

−∞
e(K+k)z dz. (2.20)

Thus ∫
SB

(
φinj − φjni) ds = 0. (2.21)

The added-mass and damping matrices, µ and ν respectively, are real and defined by

−iωµij + νij = −iωρIIδ

∫
SB

φinj ds, (2.22)

where δ = ρ if the bodies are in fluid I or δ = 1 if they are in fluid II . Thus (2.21)
states that the added-mass and damping matrices are symmetric.

Suppose now we use ψ = φj . The function φj satisfies the complex conjugate of
the equations governing φj and describes an incoming cylindrical wave far from the
body. Thus, using the fact that the ni are real, (2.18) becomes

δ

∫
SB

(φinj − φjni) ds =
2i

π

(
JK

∫ 2π

0

Ai(α)Aj(α) dα+ Jk

∫ 2π

0

Bi(α)Bj(α) dα

)
, (2.23)

where

JK =
1

K
+ 2ρ

∫ d

0

e2Kz dz, Jk =
1

k
+ 2ρ

∫ d

0

[g(z)]2 dz. (2.24)

In particular

νii =
ρIIω

π

[
JK

∫ 2π

0

|Ai(α)|2 dα+ Jk

∫ 2π

0

|Bi(α)|2 dα

]
, (2.25)

showing that the diagonal elements of the damping coefficient matrix are proportional
to the energy radiated away from the body.

2.2. A radiation and a scattering potential

Suppose now we use a scattering potential φ = φinc +φS (with ∂φ/∂n = 0 on the body
boundary) and a radiation potential ψ = φi, where φinc is an incident plane wave.
Since both φi and φS are outgoing cylindrical waves in the far field, the contribution
to the right-hand side of (2.18) from the products of these terms will be zero in
exactly the same way as when we considered two radiation potentials above. Thus
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(2.18) becomes

δ

∫
SB

φni ds = lim
KR→∞

[
− ρ

∫ d

0

∫ 2π

0

(
φIinc

∂φIi
∂R
− φIi ∂φ

I
inc

∂R

)
R dθ dz

−
∫ 0

−∞

∫ 2π

0

(
φIIinc

∂φIIi
∂R
− φIIi ∂φ

II
inc

∂R

)
R dθ dz

]
. (2.26)

If we consider the case of an incident wave of wavenumber K making an angle αinc

with the positive x-axis we obtain

δ

∫
SB

φni ds = lim
KR→∞

[
− iJK

(
KR

2π

)1/2

e−iπ/4

×
∫ 2π

0

(1− cos(α− αinc)) eiKR(1+cos(α−αinc))Ai(α) dα

]
(2.27)

= −2iJKAi(αinc + π), (2.28)

the last step being justified through stationary phase arguments. For an incident wave
of wavenumber k similar arguments reveal that

δ

∫
SB

φni ds = −2iJkBi(αinc + π). (2.29)

The hydrodynamic force on the body in the ith mode of motion can be written
Fi(t) = Re{fie−iωt} where fi is found by integrating the dynamic pressure times the
appropriate component of the normal over the body surface. In other words

fi = iρIIδω

∫
SB

φni ds, (2.30)

which when combined with (2.28) gives the exciting force in the ith direction due to
an incident wave of wavenumber K as

fi = 2ρIIωJKAi(αinc + π). (2.31)

When the incident wave has wavenumber k we obtain

fi = 2ρIIωJkBi(αinc + π). (2.32)

In both cases the exciting force is related to the amplitude of the radiated wave with
the same wavenumber as the incident wave in the direction opposite to that of the
incident wave. These formulas represent extensions to two-layer fluids of the Haskind
relations (see Newman 1976).

2.3. Two scattering potentials

If φ and ψ in (2.18) are both scattering potentials then the body surface integrals will
be zero leaving

−ρ
∫
SI∞

(
φI
∂ψI

∂n
− ψI ∂φ

I

∂n

)
ds−

∫
SII∞

(
φII

∂ψII

∂n
− ψII ∂φ

II

∂n

)
ds = 0. (2.33)

We will use the notation φ(u, αi) to represent a scattering potential for which the
incident wave has wavenumber u and makes an angle αi with the positive x-axis. In
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the far field such a potential takes the form

φI (u, αi) ∼ φIinc +

(
2

πKR

)1/2

eiKR−iπ/4eKzA(i)
u (α) +

(
2

πkR

)1/2

eikR−iπ/4g(z)B(i)
u (α), (2.34)

φII (u, αi) ∼ φIIinc +

(
2

πKR

)1/2

eiKR−iπ/4eKzA(i)
u (α) +

(
2

πkR

)1/2

eikR−iπ/4ekzB(i)
u (α), (2.35)

with the appropriate form for the incident wave depending on its wavenumber.
Using (2.33) with φ = φ(K, α1) and ψ = φ(K, α2) and the arguments of § 2.2 we

obtain

A
(2)
K (α1 + π) = A

(1)
K (α2 + π) (2.36)

and with φ = φ(k, α1) and ψ = φ(k, α2) we get

B
(2)
k (α1 + π) = B

(1)
k (α2 + π). (2.37)

In other words, if we have two incident waves of wavenumber K (k) the amplitude
of the first scattered wave with wavenumber K (k) towards the second incident wave
is the same as that of the second scattered wave towards the first. With φ = φ(K, α1)
and ψ = φ(k, α2) and with the aid of the arguments of §§ 2.1 and 2.2, (2.18) reduces to

A
(2)
k (α1 + π) = JB

(1)
K (α2 + π), (2.38)

where J = Jk/JK . Equations (2.36)–(2.38) are the three-dimensional analogues of
equations (2.27)–(2.32) from LM.

The complex conjugate of a scattering potential satisfies the same condition on
the body boundary as the potential itself and so (2.33) still applies if either or both
of φ and ψ are of this form. With φ = φ(K, α1) and ψ = φ(K, α2) we obtain, using
arguments similar to those of § 2.1, after considerable algebra,

πA
(2)
K (α1) + πA

(1)
K (α2) +

∫ 2π

0

A
(1)
K (α)A(2)

K (α) dα+ J

∫ 2π

0

B
(1)
K (α)B(2)

K (α) dα = 0, (2.39)

and with φ = φ(k, α1) and ψ = φ(k, α2) the result is

πJB
(2)
k (α1) + πJB

(1)
k (α2) +

∫ 2π

0

A
(1)
k (α)A(2)

k (α) dα+ J

∫ 2π

0

B
(1)
k (α)B(2)

k (α) dα = 0. (2.40)

Finally, with φ = φ(K, α1) and ψ = φ(k, α2) we get

πA
(2)
k (α1) + πJB

(1)
K (α2) +

∫ 2π

0

A
(1)
K (α)A(2)

k (α) dα+ J

∫ 2π

0

B
(1)
K (α)B(2)

k (α) dα = 0. (2.41)

These last three relations are the three-dimensional analogues of equations (2.38)–
(2.43) from LM.

To complete the reciprocity relations the two-layer equivalent of the three-
dimensional Bessho–Newman relations can be derived. The potential φi − φi, where
φi is a radiation potential whose behaviour in the far field is given by (2.9) and
(2.10) and which satisfies the body boundary condition given in (2.19), has zero
normal derivative on the body boundary (since ni is real) and is thus an appropriate
potential to use in (2.33). We apply (2.33) to the potential φ = φi − φi and each of
the scattering potentials ψ = φ(K, αinc) (for which the scattering amplitudes will be
labelled AK(α) and BK(α)) and ψ = φ(k, αinc) (for which the scattering amplitudes
will be labelled Ak(α) and Bk(α)) in turn. The three-dimensional equivalents of LM,
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equations (2.69)–(2.72), can thus be shown to be

πAi(αinc + π) + πAi(αinc) +

∫ 2π

0

AK(α)Ai(α) dα+ J

∫ 2π

0

BK(α)Bi(α) dα = 0 (2.42)

and∫ 2π

0

Ak(α)Ai(α) dα+ J

(
πBi(αinc + π) + πBi(αinc) +

∫ 2π

0

Bk(α)Bi(α) dα

)
= 0. (2.43)

3. Radiation problems for a submerged sphere
To illustrate the general theory of three-dimensional wave/structure interactions

in two-layer fluids we will solve various problems involving submerged spheres.
Radiation and scattering problems for such geometries can be solved using multipole
expansions, the technique having been used to solve similar problems in unstratified
fluids by Srokosz (1979) (deep water) and Linton (1991) (finite depth). The centre of
the sphere will be at x = y = 0, z = f so that if f < 0 the sphere is in the lower layer,
whereas if f > 0 the sphere is in the upper layer. We will use spherical coordinates
(r, θ, α) centred on the sphere defined by

x = r sin θ cos α, y = r sin θ sin α, z − f = r cos θ, (3.1)

with r = a being the sphere surface. If f < 0 we require a < |f|, whereas if f > 0 we
need a < min(d− f, f).

3.1. Sphere in lower fluid layer

In the present context, multipoles are solutions of the governing equation which are
singular at the centre of the sphere, satisfy all the boundary conditions of the problem
except that on the sphere surface and behave like outgoing cylindrical waves at large
horizontal distances from the singularity. These can be constructed using the method
devised by Thorne (1953). A solution of Laplace’s equation singular at z = f is
r−n−1Pm

n (cos θ) cosmα, n > m > 0, and this has the integral representation, valid for
z > f,

Pm
n (cos θ)

rn+1
cosmα =

cosmα

(n− m)!

∫ ∞
0

une−u(z−f)Jm(uR) du, (3.2)

where the Pm
n are associated Legendre functions. Note that the definition of Pm

n used
here corresponds to that in Thorne’s paper: Pm

n (cos θ) = sinm θ dmPn(cos θ)/d(cos θ)m,
which differs by a factor of (−1)m from that used by some other authors. We look
for solutions to (2.2)–(2.5) in the form φmn cosmα where (in an obvious notation)

φImn =
an+1

(n− m)!

∫ ∞
0

^ un[AL(u)euz + BL(u)e−uz]Jm(uR) du, (3.3)

φIImn =
(a
r

)n+1

Pm
n (cos θ) +

an+1

(n− m)!

∫ ∞
0

^ unCL(u)euzJm(uR) du, (3.4)

and in order to satisfy the boundary conditions on the interface and free surface we
find, exactly as in LM, that

AL(u) = K(1 + σ)(u+K)eu(f−2d)/(u−K)h(u), (3.5)

BL(u) = K(1 + σ)euf/h(u), (3.6)
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CL(u) = (u+K)euf[(u+Kσ)e−2ud − u+K]/(u−K)h(u), (3.7)

where

h(u) = (u+K)e−2ud − u+Kσ. (3.8)

The function h is zero at u = k, from (2.7), and so the integrands in (3.3) and (3.4)
have poles at u = K and u = k. In order that the multipoles behave like outgoing
waves as KR → ∞, the path of integration is indented to pass beneath these two
poles.

The far-field form of φmn , in the lower fluid, is then

φIImn ∼ − (−i)m+1an+1

(n− m)!

(
2π

R

)1/2

(Kn−1/2eiKRCK
L eKz + kn−1/2eikRCk

Lekz)e−iπ/4 (3.9)

as KR → ∞, where CK
L and Ck

L are the residues of CL(u) at u = K and u = k
respectively, which are given by

CK
L =

2K(1 + σ)eK(f−2d)

2e−2Kd − 1 + σ
, (3.10)

Ck
L =

(K + k)ekf
[
(Kσ + k)e−2kd − k +K

]
(k −K)

[
(1− 2d(K + k))e−2kd − 1

] . (3.11)

The multipoles defined by (3.3) and (3.4) can be expanded about r = 0 in spherical
coordinates by using the identity (see Thorne 1953)

e±u(z−f)Jm(uR) = (±1)m
∞∑
s=m

(±ur)s
(s+ m)!

Pm
s (cos θ). (3.12)

This gives

φIImn =
(a
r

)n+1

Pm
n (cos θ) +

∞∑
s=m

Amns

( r
a

)s
P m
s (cos θ), (3.13)

where

Amns =
a

(n− m)!(s+ m)!

∫ ∞
0

^ (au)n+seufCL(u) du. (3.14)

For computational purposes we note that the contour integral in the above expression
can be written∫ ∞

0

− (au)n+seufCL(u) du+ πi(Ka)n+seKfCK
L + πi(ka)n+sekfCk

L

and that the principal-value integral can easily be evaluated using the method de-
scribed in Linton & Evans (1992, § 2).

The solutions to the problems of heave and sway will be denoted by φ0 and φ1

respectively. In the case of heave the body velocity is given by U 0 = Re{Ue−iωt}k,
where k is a unit vector in the z-direction, whereas in sway the body velocity is U 1 =
Re{Ue−iωt}i, where i is a unit vector in the x-direction. Hence, since P 0

1 (cos θ) = cos θ
and P 1

1 (cos θ) = sin θ, we have the following body boundary conditions for the heave
and sway problems:

∂φm

∂r
= UPm

1 (cos θ) cosmα on r = a, 0 6 θ 6 π, 0 6 α < 2π, m = 0, 1.

(3.15)
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An appropriate multipole expansion for the velocity potential φm is

φm = Ua cosmα

∞∑
n=1

bmn φ
m
n , m = 0, 1, (3.16)

for some unknown coefficients bmn , where the φmn are given by (3.3) and (3.4). Note
that the n = 0 term which could appear in the expansion for φ0 has been omitted
since this term corresponds to a point source, which is physically unacceptable as it
would imply an instantaneous flux of fluid across the surface of the sphere.

The expansion (3.16) satisfies all the conditions of the problem except that on the
body surface, (3.15). By applying this condition and using orthogonality relations
for associated Legendre functions (Abramowitz & Stegun 1965, equations 8.4.11 and
8.4.13) we obtain the infinite system of linear equations

bms − s

s+ 1

∞∑
n=1

Amnsb
m
n = −δ1s

2
s > 1, m = 0, 1, (3.17)

for the unknown coefficients bmn , where δns is the Kronecker delta. This system can be
solved numerically by truncating it to an N × N system and increasing N until the
solution converges to the required degree of accuracy. One of the advantages of the
multipole method for solving problems of this type is that the truncation parameter
required to achieve accurate results is very small; in the computations presented
below a value of N = 4 was used and the results are believed to be accurate to three
significant figures.

The added-mass and damping coefficients µ and ν (the diagonal entries in the
added-mass and damping matrices, non-dimensionalized with respect to the mass of
the fluid displaced by the sphere, M, and the maximum acceleration of the sphere,
Uω) are given by (2.22) as

µm + iνm = − ρII

MU

∫ 2π

0

∫ π

0

φm(a, θ, α)Pm
1 (cos θ) cosmα a2 sin θ dθ dα, m = 0, 1. (3.18)

Using (3.13) and (3.16), we can reduce this to

µm + iνm = −bm1 −
∞∑
n=1

Amn1b
m
n (3.19)

which can be further simplified by using (3.17) with r = 1 to give

µm + iνm = −1− 3bm1 , m = 0, 1. (3.20)

The far-field form for φm, in the lower fluid layer, can be written, see (2.10),

U−1φm ∼
(

2

πKR

)1/2

eiKR−iπ/4eKzAm(α) +

(
2

πkR

)1/2

eikR−iπ/4ekzBm(α) (3.21)

as KR →∞ and from (3.9) and (3.16) we have that

|Am(α)|2 =

∣∣∣∣∣
∞∑
n=1

(Ka)nbmn
(n− m)!

∣∣∣∣∣
2

(πa2CK
L cosmα)2, (3.22)

|Bm(α)|2 =

∣∣∣∣∣
∞∑
n=1

(ka)nbmn
(n− m)!

∣∣∣∣∣
2

(πa2Ck
L cosmα)2. (3.23)



164 J. R. Cadby and C. M. Linton

Ka

0.4

0.3

0.2

0
10–3 10–2 10–1 100 101

100 101
ka

102

f /a = –3.0
–2.0
–1.5
–1.1

Ka

m0

0.1

10–3 10–2 10–1 100 101

100 101
ka

102

m1

0.20

0.16

0.12

0.08

0.04

0

(a) (b)

Figure 1. Damping coefficient (a) ν0 (heave) and (b) ν1 (sway) plotted against Ka for a submerged
sphere at different depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0. In this and all subsequent
figures a scale has been computed showing the equivalent values of ka and this is displayed across
the top of the figure.

Any numerical results produced by solving (3.17) can then be checked against the
identity

Im(bm1 ) = −πa
4

(
JK

∣∣∣∣∣CK
L

∞∑
n=1

(Ka)nbmn
(n− m)!

∣∣∣∣∣
2

+ Jk

∣∣∣∣∣Ck
L

∞∑
n=1

(ka)nbmn
(n− m)!

∣∣∣∣∣
2)

, (3.24)

which follows by computing the left- and right-hand sides of (2.25) using (3.20), (3.22)
and (3.23).

Curves of added-mass and damping coefficients for spheres in the lower fluid layer
in both heave and sway are shown in figures 1 and 2. In all the curves ρ (= ρI/ρII )
is 0.95 and the ratio of the depth of the upper fluid layer to the radius of the sphere,
d/a, is 2.0. Each plot shows the results obtained for four different submersion depths,
f/a, of the sphere: −1.1, −1.5, −2 and −3. The case f/a = −1.1 represents a sphere
close to the interface between the two fluid layers, with |f/a| increasing as the sphere
becomes more deeply submerged.

Figures 1(a) and 1(b) show the damping coefficients for heave and sway respectively
and it can be seen that in each case there are two local maxima. These occur near ka =
1, which corresponds toKa ≈ 0.025, andKa = 1 and in order to satisfactorily illustrate
both of them on the same figure we have plotted the results (here and subsequently) on
a log scale. The damping coefficient is proportional to the radiated energy, see (2.25),
and the local maximum around ka = 1 corresponds to the sphere’s increased ability to
make waves on the interface near this frequency, whereas the local maximum around
Ka = 1 corresponds to the sphere’s increased free-surface wave-making ability (see, for
example, Linton 1991). As one would expect, the closer the sphere is to the interface
the greater the wave-making capability and hence the greater the damping coefficient.
Since the sphere is in the lower layer it affects the interface a lot more than the free
surface and so the variation in the damping coefficient near ka = 1 is greater than that
near Ka = 1. In all cases the heave damping coefficient is greater than the sway damp-
ing coefficient, just as was reported by Srokosz (1979) for the single-layer fluid case.

Figures 2(a) and 2(b) show the added-mass coefficients for heave and sway respec-
tively. As the immersion depth increases the added-mass curves tend towards the
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Figure 2. Added-mass coefficient (a) µ0 (heave) and (b) µ1 (sway) plotted against Ka for a
submerged sphere at different depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

constant value of 1
2
, which is the added mass of a sphere oscillating in an infinite

expanse of fluid. When the sphere is close to the interface, the deviation from 1
2

is
greater in the case of heave. It is again noticeable that there is an effect due to the
presence of the interface near ka = 1 and a much smaller effect due to the presence
of the free surface near Ka = 1. In the limit as Ka → 0, the interface boundary
conditions (2.3) and (2.4) reduce to φIIz = 0 and we get the same results in the
long-wave limit as if the interface were the free surface in a single-layer fluid. (The
solid curve in figure 2 of Linton (1991) tends to the same value as Ka → 0 as the
f/a = −1.5 curve in figure 2a here.)

3.2. Sphere in upper fluid layer

For problems involving a sphere in the upper fluid layer we need to develop multipoles
singular at z = f > 0. This can be done in much the same way as for the case f < 0
and the details will be omitted. Suitable multipoles are

φImn =
(a
r

)n+1

Pm
n (cos θ) +

(−1)m+nan+1

(n− m)!

×
∫ ∞

0

^ un[AU(u)euz + BU(u)e−uz]Jm(uR) du, (3.25)

φIImn =
(−1)m+nan+1

(n− m)!

∫ ∞
0

^ unJm(uR)CU(u)euz du, (3.26)

where

AU(u) = (u+K)e−2ud[(−1)m+n+1(u−Kσ)euf − (u−K)e−uf]/(u−K)h(u), (3.27)

BU(u) = [(−1)m+n+1(u+K)eu(f−2d) − (u−K)e−uf]/h(u), (3.28)

CU(u) = K(1− σ)BU(u)/(u−K), (3.29)

with h(u) given by (3.8) as before. The multipoles are expanded about r = 0 by using
(3.12), giving

φImn =
(a
r

)n+1

Pm
n (cos θ) +

∞∑
s=m

( r
a

)s
BmnsP

m
s (cos θ), (3.30)
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where

Bmns =
(−1)m+na

(n− m)!(s+ m)!

∫ ∞
0

^ (au)n+s[eufAU(u) + (−1)m+se−ufBU(u)] du. (3.31)

The far-field form of φmn , in the lower fluid, is given by

φmn ∼ (−1)nim+1an+1

(n− m)!

(
2π

R

)1/2

[Kn−1/2eiKRCK
U eKz + kn−1/2eikRCk

Uekz]e−iπ/4 (3.32)

as KR →∞, where

CK
U =

(−1)m+n+12K(1− σ)eK(f−2d)

2e−2ud − 1 + σ
, (3.33)

Ck
U =

K(1− σ)[(−1)m+n+1(K + k)ek(f−2d) − (k −K)e−kf]
(k −K)[(1− 2d(K + k))e−2kd − 1]

. (3.34)

The velocity potential can be expanded in terms of these multipoles exactly as
in (3.16) and then application of the body boundary condition leads to the infinite
system of linear equations

bms − s

s+ 1

∞∑
n=1

Bmnsb
m
n = −δ1s

2
, s > 1, m = 0, 1, (3.35)

for the unknown coefficients bmn . Once this system has been solved, the non-dimensional
added-mass and damping coefficients are given by (3.20) exactly as before. The identity
relating the damping coefficient to the radiated energy, which serves as a numerical
check on the results, is now

Im(bm1 ) = −πa
4

(
JK

∣∣∣∣∣
∞∑
n=1

(−Ka)nbmn CK
U

(n− m)!

∣∣∣∣∣
2

+ Jk

∣∣∣∣∣
∞∑
n=1

(−ka)nbmn Ck
U

(n− m)!

∣∣∣∣∣
2)

. (3.36)

Note that the residues of CU are included in the summations because they depend on n.
Curves of added-mass and damping coefficients for spheres in the upper fluid layer

are shown in figures 3 and 4. In all the curves ρ is 0.95 and d/a is 4.0. Each plot
shows the results obtained for four different submersion depths, f/a, of the sphere.
The values of f/a have been chosen so there are results for a sphere close to the
interface (f/a = 1.1), close to the free surface (f/a = 2.9) and at two intermediate
values (f/a = 1.7 and 2.3).

Figures 3(a) and 3(b) show the damping coefficients for heave and sway motion
respectively. The two cases lead to similar results, but those for heave motion are
greater than those obtained for sway. As with the results for the sphere in the lower
region there are two local maxima, one near ka = 1 which corresponds to waves
being generated on the interface and one near Ka = 1 which corresponds to waves
on the free surface. When the sphere is close to the interface (f/a = 1.1) the first
local maximum is greater as more waves are generated on the interface than on the
free surface. As the sphere approaches the free surface the ability to make waves on
the interface decreases whilst it becomes easier to generate waves on the free surface;
thus the first maximum decreases and the second increases. The maximum value of
the damping coefficient is greater when f/a = 2.9 (when the distance from the free
surface is 0.1a) than for the case f/a = 1.1 (when the distance from the interface is
0.1a), showing that the ability of a sphere to make waves on the free surface is greater
than that on the interface, though there seems to be no obvious physical explanation
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Figure 3. Damping coefficient (a) ν0 (heave) and (b) ν1 (sway) plotted against Ka for a submerged
sphere at different depths in the upper fluid layer; ρ = 0.95 and d/a = 4.0.

for this. It is also noteworthy that the range of values of Ka over which there is a
noticeable effect on the free surface is an order of magnitude bigger than the range
for which the interface is affected.

The added-mass coefficients for heave and sway are shown in figures 4(a) and 4(b)
respectively and again the deviations from the infinite fluid value of 1

2
are greater for

heave motion than for sway motion. The effect of the interface is pronounced when
f/a = 1.1 as can be seen by the fact that large variations occur in the added mass
around ka = 1, whereas for f/a = 2.9 it is the free-surface effect which dominates
with large variations around Ka = 1. In the limit as Ka→ 0 the problem reduces to
that of a sphere oscillating between parallel planes and so we get the same limiting
value for f/a = 1.1 and 2.9 (as in each case the sphere is a distance 0.1a from one
of the walls) and similarly the same limiting value is obtained for f/a = 1.7 and 2.3
(in each case the sphere is 0.7a from one of the walls). Though not present on these
figures, negative added mass can occur for the heave problem when the sphere is
either very close to the free surface or to the interface. This phenomenon, which does
not appear to occur for sway or when the sphere is below the interface, is discussed
by McIver & Evans (1984).

4. Scattering problems
In this section we will solve the problem of the scattering of an incident plane

wave, of wavenumber either K or k, by a submerged sphere, first situated in the lower
layer and then above the interface. In each case the total scattering potential can be
decomposed into two parts:

φ = φinc + φS , (4.1)

where φinc is the potential representing the incident plane wave (given, up to an
arbitrary multiplicative constant, by (2.15) if the incident wave has wavenumber K
and by (2.13) and (2.14) if the incident wave has wavenumber k), and φS therefore
must satisfy (2.2)–(2.5), the body boundary condition

∂φS

∂r
= −∂φinc

∂r
on r = a, (4.2)
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Figure 4. Added-mass coefficient (a) µ0 (heave) and (b) µ1 (sway) plotted against Ka for a
submerged sphere at different depths in the upper fluid layer; ρ = 0.95 and d/a = 4.0.

and behave as an outgoing cylindrical wave far from the sphere. Without loss of
generality we can assume that the incident wave is from x = −∞ so that αinc = 0.

4.1. Sphere in lower fluid layer

First we consider an incident plane wave of wavenumber K and amplitude A on the
free surface (z = d) whose potential can be expanded in spherical polar coordinates
using Abramowitz & Stegun (1965, equations (9.1.44), (9.1.45)), and (3.12) above, to
give

φinc = − igA

ω
eK(z−d)eiKR cos α (4.3)

= − igA

ω
eK(f−d)

∞∑
m=0

εmim cosmα

∞∑
s=m

(Kr)s

(s+ m)!
Pm
s (cos θ), (4.4)

where ε0 = 1, εm = 2 for m > 1.
For the radiation problems considered in the previous section the dependence on

the azimuthal angle α was known, but here it is not (apart from the fact that it is
even) and so we must use a more general multipole expansion. We write

φS = − igA

ω

∞∑
m=0

∞∑
n=m1

cmn φ
m
n cosmα, (4.5)

where m1 = max(m, 1) and φmn is given (in the lower fluid layer) by (3.13). If we
then apply the boundary condition (4.2) and use the orthogonality of the associated
Legendre functions and the functions cosmα we can derive an infinite system of
equations for the sets of coefficients cmn , n > m1 for each m > 0, which is

cms − s

s+ 1

∞∑
n=m1

Amnsc
m
n =

εmims(Ka)seK(f−d)

(s+ 1)(s+ m)!
, s > m1. (4.6)

These systems can be solved by truncation as before, but now there is an addi-
tional truncation parameter, namely the number of systems that are solved. In the
computations presented below two 4× 4 systems were solved.
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The vertical and horizontal exciting forces on the sphere, f0
K and f1

K , can be
calculated from (2.30). We obtain

f0
K = − 4

3
πa2ρIIgA

(
Ka eK(f−d) + c0

1 +

∞∑
n=1

A0
n1c

0
n

)
(4.7)

and

f1
K = − 4

3
πa2ρIIgA

(
iKa eK(f−d) + c1

1 +

∞∑
n=1

A1
n1c

1
n

)
. (4.8)

These can be simplified using (4.6) with s = 1, giving

f0
K ≡

∣∣∣∣ f0
K

a2ρIIgA

∣∣∣∣ = 4π|c0
1|, f1

K ≡
∣∣∣∣ f1

K

a2ρIIgA

∣∣∣∣ = 4π|c1
1|. (4.9)

The vertical and horizontal exciting forces are related to the heave and sway
radiation problems through (2.31). We find, via the far-field expansions given by
(3.21) and (3.22) that

c0
1 = −JK

2
e−KdCK

L

∞∑
n=1

b0
n(Ka)

n

n!
, (4.10)

c1
1 = − iJK

2
e−KdCK

L

∞∑
n=1

b1
n(Ka)

n

(n− 1)!
, (4.11)

where the coefficients bmn are the solutions of (3.17). These identities were used as a
numerical check on the results obtained from the radiation and scattering problems.

Next we consider the case of an incident plane wave of amplitude A on the interface
(z = 0) and wavenumber k, described by

φIinc = − igAK

ωk
g(z) eikR cos α, φIIinc = − igAK

ωk
ekz eikR cos α. (4.12)

The analysis is very similar to that given above for an incident wave of wavenumber
K . We use the same expansion for φS as before, equation (4.5), but denote the
unknown coefficients by dmn , and we obtain the infinite system of equations

dms − s

s+ 1

∞∑
n=m1

Amnsd
m
n =

εmimsKa(ka)s−1ekf

(s+ 1)(s+ m)!
, s > m1, (4.13)

for each m > 0.
The expressions for the vertical and horizontal exciting forces are

f0
k ≡

∣∣∣∣ f0
k

a2ρIIgA

∣∣∣∣ = 4π|d0
1|, f1

k ≡
∣∣∣∣ f1

k

a2ρIIgA

∣∣∣∣ = 4π|d1
1| (4.14)

and the formulas connecting this scattering problem to the heave and sway radiation
problems are now, from (2.32),

d0
1 = −Jk

2
Ck
L

∞∑
n=1

b0
nKa(ka)

n−1

n!
, (4.15)

d1
1 = − iJk

2
Ck
L

∞∑
n=1

b1
nKa(ka)

n−1

(n− 1)!
, (4.16)
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Figure 5. Non-dimensionalized (a) vertical exciting force f0
K and (b) horizontal exciting force f1

K

plotted against Ka for different submersion depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

where the coefficients bmn are the solutions of (3.17).
Equations (3.20), (4.9)–(4.11), (4.14)–(4.16) can be combined with (3.24) with m = 0

and 1 to give

νm =
3a

16π

(
e2Kd

JK
fmK

2
+

k2

K2Jk
fmk

2
)

(4.17)

which relates the heave and sway damping coefficients to the vertical and horizontal
exciting forces respectively.

Figures 5(a) and 5(b) show, respectively, the non-dimensionalized vertical and
horizontal exciting forces on the sphere due to an incident wave of wavenumber K .
The two sets of curves are very similar and show that, as one would expect, the forces
increase the closer the sphere is to the interface (and hence to the free surface). In
each figure there are four curves corresponding to different immersion depths of the
sphere in the lower region. These immersion depths, f/a = −1.1, −1.5, −2 and −3,
are the same as those used in § 3.1, as are the values ρ = 0.95 and d/a = 2.0.

The vertical and horizontal exciting forces for the case of an incident wave of
wavenumber k are not shown. They can of course be determined from (4.17) using
the results shown in figures 1 and 5. The forces are an order of magnitude smaller
than the corresponding forces due to an incident wave of wavenumber K and display
the same qualitative effects as the sphere approaches the interface.

4.2. Sphere in upper fluid layer

An incident plane wave of wavenumber K and amplitude A on the free surface
(z = d) has the same form in the upper layer as in the lower layer, given by (4.4).
The potential φS can again be expanded using (4.5), but we now use the multipole
expansions developed for the upper fluid layer, (3.30). The details of the solution
procedure will be omitted. For each m > 0 the coefficients cmn satisfy the infinite
system of equations

cms − s

s+ 1

∞∑
n=m1

Bmnsc
m
n =

εmims(Ka)seK(f−d)

(s+ 1)(s+ m)!
, s > m1, (4.18)
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and the non-dimensional vertical and horizontal exciting forces on the sphere are
given by

f0
K ≡

∣∣∣∣ f0
K

a2ρIgA

∣∣∣∣ = 4π|c0
1|, f1

K ≡
∣∣∣∣ f1

K

a2ρIgA

∣∣∣∣ = 4π|c1
1|. (4.19)

The solution is related to the heave and sway radiation problems for a sphere in the
upper fluid through the equations

c0
1 = −JK

2ρ
e−Kd

∞∑
n=1

b0
nC

K
U

n!
(−Ka)n, (4.20)

c1
1 =

iJK
2ρ

e−Kd
∞∑
n=1

b1
nC

K
U

(n− 1)!
(−Ka)n, (4.21)

where the coefficients bmn are the solutions of (3.35).
For the case of an incident wave of wavenumber k (and amplitude A on the

interface z = 0) we note that in region I this takes the form

φIinc = − igAK

ωk
g(z) eikR cos α = − igAK

ωk

[
Kσ − k
K(σ − 1)

ekz +
K − k
K(σ − 1)

e−kz
]

eikR cos α, (4.22)

which can be expanded in spherical polar coordinates, giving

φinc = − igA

ωk(σ − 1)

∞∑
m=0

εmim cosmα

×
∞∑
s=m

[
(Kσ − k)ekf + (−1)m+s(K − k)e−kf] (kr)s

(s+ m)!
Pm
s (cos θ). (4.23)

For each m > 0 the coefficients dmn in the expansion for φS satisfy the infinite system
of equations

dms − s

s+ 1

∞∑
n=m1

Bmnsd
m
n

=
εmims(ka)s

(s+ 1)(s+ m)!

(Kσ − k)ekf + (−1)m+s(K − k)e−kf
k(σ − 1)

, s > m1, (4.24)

and the non-dimensional vertical and horizontal exciting forces on the sphere are
given by

f0
k ≡

∣∣∣∣ f0
k

a2ρIgA

∣∣∣∣ = 4π|d0
1|, f1

k ≡
∣∣∣∣ f1

k

a2ρIgA

∣∣∣∣ = 4π|d1
1|. (4.25)

We also have the relations

d0
1 = −KJk

2ρk

∞∑
n=1

b0
nC

k
U

n!
(−ka)n, (4.26)

d1
1 =

iKJk
2ρk

∞∑
n=1

b1
nC

k
U

(n− 1)!
(−ka)n, (4.27)

where the coefficients bmn are the solutions of (3.35), and

νm =
3aρ2

16π

(
e2Kd

JK
fmK

2
+

k2

K2Jk
fmk

2
)
. (4.28)
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Figure 6. Non-dimensionalized (a) vertical exciting force f0
K and (b) horizontal exciting force f1

K

due to an incident wave of wavenumber K , plotted against Ka for different submersion depths in
the upper fluid layer; ρ = 0.95 and d/a = 4.0.
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Figure 7. Non-dimensionalized (a) vertical exciting force f0
k and (b) horizontal exciting force f1

k

due to an incident wave of wavenumber k, plotted against Ka for different submersion depths in
the upper fluid layer; ρ = 0.95 and d/a = 4.0.

Figures 6 and 7 show curves of f0 and f1 plotted against Ka for incident wavenum-
bers K and k when ρ = 0.95 and d/a = 4.0. For each figure there are four curves
corresponding to the immersion depths f/a = 1.1, 1.7, 2.3 and 2.9. These immersion
depths are the same as those used in § 3.2. Figures 6(a) and 6(b) show, respectively,
the non-dimensionalized vertical and horizontal exciting forces on the sphere due to
an incident wave of wavenumber K . As one would expect, the forces are greater the
closer the sphere is to the free surface. Figures 7(a) and 7(b) show curves for the case
of an incident wave of wavenumber k and these are an order of magnitude smaller
than those excited by an incident wave of wavenumber K . In both cases, the values
obtained for the vertical forces are greater than those for the horizontal force but for
incident wavenumber k the forces increase as the sphere approaches the interface.
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5. Conclusion
In this paper we have examined the relationships that exist between the solutions

to three-dimensional radiation and scattering problems in two-layer fluids where the
upper fluid is bounded above by a free surface and the lower (denser) fluid is infinite in
extent. In such a situation propagating waves can exist at two different wavenumbers
for any given frequency. A systematic derivation, using Green’s theorem, of all the
reciprocity relations for such problems has been carried out, including extensions to
the two-fluid case of the Haskind and Bessho–Newman relations. We have then used
multipole expansions to solve radiation and scattering problems for a sphere situated
entirely within either the upper or lower fluid layer.

It would be interesting to examine what happens to the hydrodynamic charac-
teristics associated with the internal waves when the sphere actually intersects the
interface, but this problem is not amenable to the multipole treatment given here.
Moreover, the approximation that the interface between the two layers is sharp, with
a discontinuous density variation, is arguably less appropriate to the situation where
the body straddles the two fluid layers.

A possible extension to the work described above would be to model the interface
as a layer of finite thickness in which the density varies very rapidly. Such a layer is
called a pycnocline. Some work in this direction using multipoles has been carried out
by Gavrilov, Ermanyuk & Sturova (1999) for the two-dimensional case of a two-layer
fluid which is bounded above and below by rigid walls and contains a horizontal
circular cylinder.
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